Are Flexible Electronic Displays the Future of Smartphone Display Technology? – Guest Post by Riley Collins

During the summer it was my pleasure to work with two interns from local universities. As part of their instruction I asked each of them to pick a topic of their choice, and to generate a patent landscape report on the area. For each project the interns were asked to research the technical aspects of their topic, suggest a patent search strategy for identifying documents, reduce their collections to remove family duplicates, cleanup various data fields, categorize the collection into a variety of facets, conduct relevant analytics on the data, and finally generate both a written report and a PowerPoint presentation to summarize their results. I am excited to publish the first of these projects produced by Riley Collins who did his project on Flexible Electronic Displays. So without further ado here’s Riley’s project:

What are Flexible Electronic Displays?

Unlike traditional flat panel displays OLEDs, one of the more popular types of flexible electronic displays are solid-state devices composed of thin films of organic molecules that create light with the application of electricity. OLEDs can provide brighter, crisper displays on electronic devices and use less power than conventional light-emitting diodes (LEDs) or liquid crystal displays (LCDs) used according to HowStuffWorks.com.  Using glass substrates, flexible technology OLED’s utilizes plastic substrates, which allow the display to bend and twist. Flexible OLED’s only need one sheet of substrate while LCD’s require two and a separate backlight. Because of this, OLED’s are able to be paper thin and lightweight, a perfect candidate for mobile phones and wearable electronics. The challenge for manufacturers currently is allowing the device to be repeatedly deformed while keeping the internals intact. Currently, electronic flexible displays are being used to make curved phones and televisions. This is possible because while the display may be “flexible”, the internal components remain fixed. Figure 1 shows a diagram of the layers in different types of displays. Samsung refers to their flexible OLED display as FAMOLED.

Electronic paper displays are the oldest type of flexible display. They differ in that they reflect light and have a wider viewing angle. E-paper is used predominately in E-readers and signage because text can be read in direct sunlight without fading. Similar to flexible OLED and LCD, it also uses plastic substrates, allowing display to bend like paper. E-paper displays are not ideal for phones and tablets because they have a very low refresh rate, ghosting problems, and are yet to be mass-produced in color.

Applications:

As flexible displays become cheaper to manufacture we will likely see new functions of this technology. While curved devices are the first to hit the market, recent patent filings by top display manufacturers suggest that foldable, bendable, and rollable devices are not that far away. Foldable displays will likely come first to accommodate the growing demand for larger displays and the need for portability. As the wearable device market grows, bendable displays could be used to wraparound an individual’s wrist. Finally, displays that can be rolled up may be used in televisions and eventually a tubular device with a retractable roll out display.

Advantages:

Some benefits of flexible displays are better durability, lighter weight, thinner dimensions, and unique software commands. The use of a plastic substrate and the ability to flex locally when dropped makes the device less likely to crack, saving the users the trouble of having their screen replaced or being forced to buy a new device. Flexible devices will also be lighter and thinner than their rigid counterparts because they use plastic instead of glass. The ability to deform the device may allow the user to access a set of commands in their devices user interface. For example, when the device is folded it will go into sleep mode.

Market Potential:

Market Data Associated with Future Sales of Flexible Electronic Displays - Click to Enlarge

Figure 2: Market Data Associated with Future Sales of Flexible Electronic Displays – Click Chart to Enlarge

Demand for flexible displays is on the verge of a sharp increase. According to a new IHS report, “Global Flexible Display Technology and Market Forecast” (Figure 2 above). It is estimated that the flexible display market will grow to $1.1 billion in 2015 and will continue to develop at rate of 226% to $42 billion by the end of 2020. Units sold are projected to rise from 3.2 million in 2013 to 792 million in 2020. This means that in 2020, flexible display market will have captured 13% of the total display market. Even though smartphones with flexible displays have not yet achieved their desired potential, it is probable that they will soon capture the market by storm.

Collection Methodology:

The search was started by locating as many Cooperative Patent Classification (CPC) codes that referred to flexible displays.. A sample of highly relevant documents were used to cross-reference and make sure that no CPC codes were left out.. The codes used were are:

  • G06F 1/1652… The display being flexible, e.g. mimicking a sheet of paper, or rollable
  • H04M 1/0268…  Including a flexible display panel
  • G09F 9/301… Flexible foldable or roll-able electronic displays e.g. thin LCD, OLED
  • G09G 2380/02… Applications of flexible displays
  • H01L 2251/5338… Flexible OLED

A family reduction was conducted, but all unique US application numbers were retained. Foreign inventions were reduced to one invention per extended family. This list of CPC codes produced 2156 documents. After manually sorting the files, 177 were on E-Paper, and 1218 were Flexible OLED/LCD technologies. Many of the relevant documents included the key words flex*, deform, roll*, curve, bend* or bent, fold*, and a flexible or plastic substrate.

Findings:

The objective of preforming this research is to complete an analysis of the Flexible Display IP landscape and assess the position of leading display manufacturers. According to the total number of applications by publication year, the patent filings for flexible displays are increasing at an exponential rate. They increased from 48 publications in 2010 to 566 in 2014/2015. This represents more than a 100% increase on average each year. Even more impressive is that almost 60% of the filings between 2010 and 2015 have came in the past 18 months. An initial look at the top companies by publications shows Samsung with the most at 271, LG with 97, and SEL with 85. Trailing behind are Creator Technology, Nokia, Apple, and Blackberry. Samsung and LG are likely to have the most filings because they are the only companies on this list that manufacturers portable devices and displays. Flexible displays are a relatively new technological field and because of this, the majority of the publications have not gone on to grant yet. It remains to be seen how much legal coverage will be given to these companies. The requirements for protection may still be uncertain and this could lead to lawsuits down the road.

When looking at the patent filings by type, the display component, electronic device, and display panel publications all increased sharply after 2013. Display panel filings surpassed electronic device filings in 2014/2015. Samsung is the clear leader in flexible display panel with 95 publications in 2014/2015 alone. Comparatively, LG and SEL both produced slightly more than 30 in this same time. The story is very similar for the display components except instead of SEL, Nokia trails slightly behind LG. The device patents have increased considerably since 2013 with Samsung going from 11 to 49, LG from 5 to 32, and Apple from 4 to 19. Blackberry has also increased their device patents steadily. The findings suggest that devices are already being specially made utilizing this new display technology. Companies such as Apple and Nokia who have few patents on the flexible display are perhaps exploring future licensing deals if they plan on releasing a device that contains a flexible display.

Samsung, SEL, Creator Technology, and Philips have most of their filings on the display, while LG, Nokia, Apple, Blackberry, Pantech, and Motorola have more patents on a device that uses a flexible display. Some other display-oriented companies include Sony, Sharp, ITRI, Toshiba, Universal Display Corporation, Fujifilm, Kodak, AU Optronics, and Boe Technology. To emphasize how much of a force the top two companies in this landscape are, a chart is included of Samsung and LG combined vs. all other companies. In 2014/2015 the top two combined surpassed all remaining companies in number of publications with 276 vs. 248. This shows the push that the leading display manufacturers are making to protect their intellectual property before this technology is mass-produced.

Charts and graphs associated with these analysis as well as a few other views on the data can be found in a PowerPoint presentation summarizing this research. The presentation can be downloaded by clicking on the following link: Flexible Electonic Displays Patent Analysis.

Leading Manufacturers:

In January 2013 at the Consumer Electronics Show (CES), Samsung showcased prototypes of their flexible YOUM brand displays. In October of 2013, they released their first product using a flexible display. It appears that Samsung abandoned the YOUM branding because the Galaxy Round now uses a Flexible Super AMOLED display (FAMOLED). The Korean company then released the Galaxy note edge in September 2013. The note edge utilizes the curve to display information on the side of the display. Samsung’s latest installment of a flexible display device was the Galaxy S6 Edge in March 2015. The S6 differentiates itself from the note edge because it has two curved edges. Samsung announced in August of 2015 that they will be investing $3 billion to expand their OLED plant in Vietnam.

LG showed one of its 6 inch flexible prototypes in June of 2013 at the Society for information Display (SID). They then announced the release of the G Flex, a curved phone, shortly after CES in January 2014. The new and improved G Flex 2 would be released a year later at CES. In a private showroom at CES 2015, LG unveiled a prototype phone with a dual edge display, similar to the Galaxy S6 edge, which was released a few months later. In June 2015, at SID, LG released an 18 inch rollable display prototype at SID. LG has plans to make a 60 inch version by 2017. In July 2015, LG announced that it was investing $905 million into a 6th generation flexible OLED production line in South Korea. The project is said to finish in 2017 and will allow LG to meet the increasing demand for flexible displays in phones and wearable devices.

 Companies to watch for:

Nokia and SEL have released a two 5.9 inch foldable OLED prototypes at SID 2014. One of which folds like a book and the other with a tri-fold design. With Nokia and SEL partnering together, a functional foldable device may be released in the near future. http://news.oled-display.net/nokia-showcase-three-fold-oled-displays/

Originally a spin off from Philips Electronics, Polymer Vision was acquired by Wilstron Corp in 2009. The original Polymer Vision patent portfolio is now owned by the Netherlands company Creator Technology. Polymer Vision was trying to release a product called the readius which is essentially an E-reader with a 5 inch roll out display. Creator Technology may become a force in the flexible display industry, especially in regards to roll out displays. http://www.engadget.com/2012/12/03/wistron-reportedly-closes-polymer-vision/

In August 2014, Au Optronics released a 5 inch flexible AMOLED panel at a trade show. They also released a similar prototype in August 2015 that can detect how the user bends it. http://www.androidauthority.com/galaxy-s6-and-zenfone-2-top-charging-test-636708/

http://www.oled-info.com/auo-focus-flexible-oleds-shows-44-curved-amoled-panel-prototype

Boe Technology has recently created a prototype 9.55 inch flexible display that can be rolled into a tube, they have also created a 55 inch UHD flexible AMOLED display, the largest of its kind. Boe Technology also has an ongoing partnership with Universal Display Corporation. http://company.boe.com/portal/en/chuangxinkeji/boechuangxin/wenzhangxiangqing/dynamic/pecbwd264.html

ITRI is using its FlexUpTM technology to create foldable and rollable AMOLED panels. They displayed some of their latest innovations in August, 2015 at Touch Taiwan. https://www.itri.org.tw/eng/Content/NewsLetter/contents.aspx?&SiteID=1&MmmID=617731531241750114&SSize=10&SYear=2015&Keyword=&MSID=654530737004101325

Current Limitations:

There are still challenges to overcome before truly flexible devices hit the market, as the machinery behind the display is not meant to be bent. While plastic has its advantages, it is not as good as glass when it comes to encapsulating the thin-film-transistor and other components from moisture, oxygen, and other unwanted particles. Phone technology need to become tough enough to handle the stress of daily flexing over an extended period of time. Another barrier of a flexible device is the battery. Batteries are typically rigid in nature and until these batteries can be manipulated to flex, the notion of a bendable phone is unlikely. Similar to the battery, the silicon circuit board and its components are also not malleable. Device manufacturers will have to find cost effective alternatives to these problems before these new gadgets hit the shelves.

What to expect:

Samsung and LG are likely to be the first manufacturers of the next generation of flexible display devices. They have both proven that they have the expertise to create flexible display devices, as evidenced by the S6 edge and G Flex2. Nokia, Apple, and Blackberry are likely the next manufacturers to produce a flexible device based on their elevated number of patents.  However, they will likely have to license the display technology in order to incorporate their devices. There is currently a need for lighter and thinner devices that are extremely portable and durable, a flexible device that can change its form for convenience appears to be the solution. It is simply a matter of time before manufacturers cross these last barriers and release a new wave of flexible devices that will flood the market.

Additional Sources:

http://www.oled-info.com/samsung-youm

http://www.thebitbag.com/lg-unveils-a-smartphone-prototype-with-curved-dual-edge-display-at-ces-2015-report/107520

http://www.businesskorea.co.kr/article/10863/flexible-lg-display-unroll-world%E2%80%99s-largest-rollable-display

http://www.hongkiat.com/blog/flexible-smartphones/

http://www.ibtimes.com/samsung-display-plough-3b-more-vietnam-plant-report-2043455

http://www.samsunggeeks.com/2012/12/03/flexible-displays-what-are-they-and-how-do-they-work/

http://press.ihs.com/press-release/design-supply-chain/flexible-display-market-reach-nearly-800-million-unit-shipments-20

http://arstechnica.com/gadgets/2013/10/the-straight-truth-about-samsung-and-lgs-flexible-smartphone-displays/

https://www.itri.org.tw/eng/Content/MsgPic01/Contents.aspx?SiteID=1&MmmID=620651706136357202&MSid=621024025041044551

http://news.oled-display.net/nokia-showcase-three-fold-oled-displays/

http://www.engadget.com/2012/12/03/wistron-reportedly-closes-polymer-vision/

http://www.androidauthority.com/galaxy-s6-and-zenfone-2-top-charging-test-636708/

http://www.oled-info.com/auo-focus-flexible-oleds-shows-44-curved-amoled-panel-prototype

http://company.boe.com/portal/en/chuangxinkeji/boechuangxin/wenzhangxiangqing/dynamic/pecbwd264.html

https://www.itri.org.tw/eng/Content/NewsLetter/contents.aspx?&SiteID=1&MmmID=617731531241750114&SSize=10&SYear=2015&Keyword=&MSID=654530737004101325

 


 

rileypicRiley Collins is a Junior at Miami University studying Analytics and Entrepreneurship. He plans to work as a business intelligence consultant upon graduation. He spent the summer as an intern for Patinformatics, LLC.
His favorite quote is: “Say YES. You’ll figure it out afterwards” – Tina Fey

 

Comments 1

Leave a Reply

Your email address will not be published. Required fields are marked *